当前位置:  编程技术>java/j2ee

深入C++ typedef的用法总结(必看)

    来源: 互联网  发布时间:2014-10-25

    本文导语:  第一、四个用途 用途一: 定义一种类型的别名,而不只是简单的宏替换。可以用作同时声明指针型的多个对象。比如:char* pa, pb; // 这多数不符合我们的意图,它只声明了一个指向字符变量的指针, // 和一个字符变量;以下...

第一、四个用途
用途一:
定义一种类型的别名,而不只是简单的宏替换。可以用作同时声明指针型的多个对象。比如:
char* pa, pb; // 这多数不符合我们的意图,它只声明了一个指向字符变量的指针,
// 和一个字符变量;
以下则可行:
typedef char* PCHAR; // 一般用大写
PCHAR pa, pb; // 可行,同时声明了两个指向字符变量的指针
虽然:
char *pa, *pb;
也可行,但相对来说没有用typedef的形式直观,尤其在需要大量指针的地方,typedef的方式更省事。
用途二:
用在旧的C的代码中(具体多旧没有查),帮助struct。以前的代码中,声明struct新对象时,必须要带上struct,即形式为: struct 结构名 对象名,如:
struct tagPOINT1
{
int x;
int y;
};
struct tagPOINT1 p1;
而在C++中,则可以直接写:结构名 对象名,即:
tagPOINT1 p1;
估计某人觉得经常多写一个struct太麻烦了,于是就发明了:
typedef struct tagPOINT
{
int x;
int y;
}POINT;
POINT p1; // 这样就比原来的方式少写了一个struct,比较省事,尤其在大量使用的时候
或许,在C++中,typedef的这种用途二不是很大,但是理解了它,对掌握以前的旧代码还是有帮助的,毕竟我们在项目中有可能会遇到较早些年代遗留下来的代码。
用途三:
用typedef来定义与平台无关的类型。
比如定义一个叫 REAL 的浮点类型,在目标平台一上,让它表示最高精度的类型为:
typedef long double REAL;
在不支持 long double 的平台二上,改为:
typedef double REAL;
在连 double 都不支持的平台三上,改为:
typedef float REAL;
也就是说,当跨平台时,只要改下 typedef 本身就行,不用对其他源码做任何修改。
标准库就广泛使用了这个技巧,比如size_t。
另外,因为typedef是定义了一种类型的新别名,不是简单的字符串替换,所以它比宏来得稳健(虽然用宏有时也可以完成以上的用途)。
用途四:
为复杂的声明定义一个新的简单的别名。方法是:在原来的声明里逐步用别名替换一部分复杂声明,如此循环,把带变量名的部分留到最后替换,得到的就是原声明的最简化版。举例:
1. 原声明:int *(*a[5])(int, char*);
变量名为a,直接用一个新别名pFun替换a就可以了:
typedef int *(*pFun)(int, char*);
原声明的最简化版:
pFun a[5];
2. 原声明:void (*b[10]) (void (*)());
变量名为b,先替换右边部分括号里的,pFunParam为别名一:
typedef void (*pFunParam)();
再替换左边的变量b,pFunx为别名二:
typedef void (*pFunx)(pFunParam);
原声明的最简化版:
pFunx b[10];
3. 原声明:doube(*)() (*e)[9];
变量名为e,先替换左边部分,pFuny为别名一:
typedef double(*pFuny)();
再替换右边的变量e,pFunParamy为别名二
typedef pFuny (*pFunParamy)[9];
原声明的最简化版:
pFunParamy e;
理解复杂声明可用的“右左法则”:
从变量名看起,先往右,再往左,碰到一个圆括号就调转阅读的方向;括号内分析完就跳出括号,还是按先右后左的顺序,如此循环,直到整个声明分析完。举例:
int (*func)(int *p);
首先找到变量名func,外面有一对圆括号,而且左边是一个*号,这说明func是一个指针;然后跳出这个圆括号,先看右边,又遇到圆括号,这说明(*func)是一个函数,所以func是一个指向这类函数的指针,即函数指针,这类函数具有int*类型的形参,返回值类型是int。
int (*func[5])(int *);
func右边是一个[]运算符,说明func是具有5个元素的数组;func的左边有一个*,说明func的元素是指针(注意这里的*不是修饰func,而是修饰func[5]的,原因是[]运算符优先级比*高,func先跟[]结合)。跳出这个括号,看右边,又遇到圆括号,说明func数组的元素是函数类型的指针,它指向的函数具有int*类型的形参,返回值类型为int。
也可以记住2个模式:
type (*)(....)函数指针
type (*)[]数组指针
第二、两大陷阱
陷阱一:
记住,typedef是定义了一种类型的新别名,不同于宏,它不是简单的字符串替换。比如:
先定义:
typedef char* PSTR;
然后:
int mystrcmp(const PSTR, const PSTR);
const PSTR实际上相当于const char*吗?不是的,它实际上相当于char* const。
原因在于const给予了整个指针本身以常量性,也就是形成了常量指针char* const。
简单来说,记住当const和typedef一起出现时,typedef不会是简单的字符串替换就行。
陷阱二:
typedef在语法上是一个存储类的关键字(如auto、extern、mutable、static、register等一样),虽然它并不真正影响对象的存储特性,如:
typedef static int INT2; //不可行
编译将失败,会提示“指定了一个以上的存储类”。
第三、typedef 与 #define的区别
案例一:
通常讲,typedef要比#define要好,特别是在有指针的场合。请看例子:
typedef char *pStr1;
#define pStr2 char *;
pStr1 s1, s2;
pStr2 s3, s4;
在上述的变量定义中,s1、s2、s3都被定义为char *,而s4则定义成了char,不是我们所预期的指针变量,根本原因就在于#define只是简单的字符串替换而typedef则是为一个类型起新名字。
案例二:
下面的代码中编译器会报一个错误,你知道是哪个语句错了吗?
typedef char * pStr;
char string[4] = "abc";
const char *p1 = string;
const pStr p2 = string;
p1++;
p2++;
是p2++出错了。这个问题再一次提醒我们:typedef和#define不同,它不是简单的文本替换。上述代码中const pStr p2并不等于const char * p2。const pStr p2和const long x本质上没有区别,都是对变量进行只读限制,只不过此处变量p2的数据类型是我们自己定义的而不是系统固有类型而已。因此,const pStr p2的含义是:限定数据类型为char *的变量p2为只读,因此p2++错误。
第四部分资料:使用 typedef 抑制劣质代码
摘要:Typedef 声明有助于创建平台无关类型,甚至能隐藏复杂和难以理解的语法。不管怎样,使用 typedef 能为代码带来意想不到的好处,通过本文你可以学习用 typedef 避免缺欠,从而使代码更健壮。
typedef 声明,简称 typedef,为现有类型创建一个新的名字。比如人们常常使用 typedef 来编写更美观和可读的代码。所谓美观,意指 typedef 能隐藏笨拙的语法构造以及平台相关的数据类型,从而增强可移植性和以及未来的可维护性。本文下面将竭尽全力来揭示 typedef 强大功能以及如何避免一些常见的陷阱。
Q:如何创建平台无关的数据类型,隐藏笨拙且难以理解的语法?
A: 使用 typedefs 为现有类型创建同义字。
定义易于记忆的类型名
typedef 使用最多的地方是创建易于记忆的类型名,用它来归档程序员的意图。类型出现在所声明的变量名字中,位于 ''typedef'' 关键字右边。例如:
typedef int size;此声明定义了一个 int 的同义字,名字为 size。注意 typedef 并不创建新的类型。它仅仅为现有类型添加一个同义字。你可以在任何需要 int 的上下文中使用 size:
void measure(size * psz); size array[4];size len = file.getlength();std::vector vs; typedef 还可以掩饰符合类型,如指针和数组。例如,你不用象下面这样重复定义有 81 个字符元素的数组:
char line[81];char text[81];定义一个 typedef,每当要用到相同类型和大小的数组时,可以这样:
typedef char Line[81]; Line text, secondline;getline(text);同样,可以象下面这样隐藏指针语法:
typedef char * pstr;int mystrcmp(pstr, pstr);这里将带我们到达第一个 typedef 陷阱。标准函数 strcmp()有两个‘const char *'类型的参数。因此,它可能会误导人们象下面这样声明 mystrcmp():
int mystrcmp(const pstr, const pstr); 这是错误的,按照顺序,‘const pstr'被解释为‘char * const'(一个指向 char 的常量指针),而不是‘const char *'(指向常量 char 的指针)。这个问题很容易解决:
typedef const char * cpstr; int mystrcmp(cpstr, cpstr); // 现在是正确的记住:不管什么时候,只要为指针声明 typedef,那么都要在最终的 typedef 名称中加一个 const,以使得该指针本身是常量,而不是对象。
代码简化
上面讨论的 typedef 行为有点像 #define 宏,用其实际类型替代同义字。不同点是 typedef 在编译时被解释,因此让编译器来应付超越预处理器能力的文本替换。例如:
typedef int (*PF) (const char *, const char *);这个声明引入了 PF 类型作为函数指针的同义字,该函数有两个 const char * 类型的参数以及一个 int 类型的返回值。如果要使用下列形式的函数声明,那么上述这个 typedef 是不可或缺的:
PF Register(PF pf);Register() 的参数是一个 PF 类型的回调函数,返回某个函数的地址,其署名与先前注册的名字相同。做一次深呼吸。下面我展示一下如果不用 typedef,我们是如何实现这个声明的:
int (*Register (int (*pf)(const char *, const char *))) (const char *, const char *); 很少有程序员理解它是什么意思,更不用说这种费解的代码所带来的出错风险了。显然,这里使用 typedef 不是一种特权,而是一种必需。持怀疑态度的人可能会问:“OK,有人还会写这样的代码吗?”,快速浏览一下揭示 signal()函数的头文件 ,一个有同样接口的函数。
typedef 和存储类关键字(storage class specifier)
这种说法是不是有点令人惊讶,typedef 就像 auto,extern,mutable,static,和 register 一样,是一个存储类关键字。这并是说 typedef 会真正影响对象的存储特性;它只是说在语句构成上,typedef 声明看起来象 static,extern 等类型的变量声明。下面将带到第二个陷阱:
typedef register int FAST_COUNTER; // 错误编译通不过。问题出在你不能在声明中有多个存储类关键字。因为符号 typedef 已经占据了存储类关键字的位置,在 typedef 声明中不能用 register(或任何其它存储类关键字)。
促进跨平台开发
typedef 有另外一个重要的用途,那就是定义机器无关的类型,例如,你可以定义一个叫 REAL 的浮点类型,在目标机器上它可以i获得最高的精度:
typedef long double REAL; 在不支持 long double 的机器上,该 typedef 看起来会是下面这样:
typedef double REAL; 并且,在连 double 都不支持的机器上,该 typedef 看起来会是这样: 、
typedef float REAL; 你不用对源代码做任何修改,便可以在每一种平台上编译这个使用 REAL 类型的应用程序。唯一要改的是 typedef 本身。在大多数情况下,甚至这个微小的变动完全都可以通过奇妙的条件编译来自动实现。不是吗? 标准库广泛地使用 typedef 来创建这样的平台无关类型:size_t,ptrdiff 和 fpos_t 就是其中的例子。此外,象 std::string 和 std::ofstream 这样的 typedef 还隐藏了长长的,难以理解的模板特化语法,例如:basic_string 和 basic_ofstream。

    
 
 

您可能感兴趣的文章:

  • 深入C++浮点数无效值定义与判定的解决办法
  • 深入C++可见性与生命期的区别详解
  • 深入C++四种强制类型转换的总结
  • 用C++实现strcpy(),返回一个char*类型的深入分析
  • c++关键字mutable深入解析
  • 深入分析C++中两个大数相乘结果不正确的问题
  • 深入理解:Java是类型安全的语言,而C++是非类型安全的语言
  • 深入理解C++中常见的关键字含义
  • 深入分析C++中执行多个exe文件方法的批处理代码介绍
  • 从汇编看c++中变量类型的深入分析
  • C++ using namespace std 用法深入解析
  • 深入解析C++中的mutable关键字
  • C++实现strcmp字符串比较的深入探讨
  • C++中virtual继承的深入理解
  • 虚函数与纯虚函数(C++与Java虚函数的区别)的深入分析
  • C++ Vector用法深入剖析
  • 深入C++中API的问题详解
  • C++中const的实现机制深入分析
  • 深入C++中inline关键字的使用
  • C++输入输出操作符重载的深入分析
  • mysql中limit的用法深入分析
  • 深入理解结构体中占位符的用法
  • PHP中redis的用法深入解析
  • 深入理解atoi()与itoa()函数的用法
  • 深入多线程之:双向信号与竞赛的用法分析
  • 深入SQL Cursor基本用法的详细介绍
  • 深入理解双指针的两种用法
  • 深入探讨:oracle中row_number() over()分析函数用法
  • 深入DropDownList用法的一些学习总结分析
  • jQuery中.live()方法的用法深入解析
  • pthread_cond_wait() 用法深入分析
  •  
    本站(WWW.)旨在分享和传播互联网科技相关的资讯和技术,将尽最大努力为读者提供更好的信息聚合和浏览方式。
    本站(WWW.)站内文章除注明原创外,均为转载、整理或搜集自网络。欢迎任何形式的转载,转载请注明出处。












  • 相关文章推荐
  • C语言typedef与复杂函数声明问题的深入解析
  • 深入解析C语言中typedef的四个用途
  • Docker支持更深入的容器日志分析
  • 关于《深入浅出MFC》
  • Linux有没有什么好的高级的书,我要深入,
  • 深入理解linux内核
  • [100分]有没有关于binutils的深入的资料?或者深入底层的资料?
  • 深入理解PHP内核 TIPI
  • 想深入学习Java应该学习哪些东西
  • 哪位有《JSP深入编程》电子版?
  • 想要深入学习LINUX该学什么?
  • 100分求:哪儿有《深入理解linux内核》可供下哉!
  • 如何深入Linux的内核学习?
  • U-BOOT得掌握到什么程序,用不用深入去学
  • 想深入了解操作系统该怎么做
  • 前一阵子学习了shell脚本,如果想深入点了解linux可以看什么书呢
  • 问一个《深入理解计算机系统》中的问题
  • 深入多线程之:深入分析Interlocked
  • ##想买书深入学习linux下的编程,请指教
  • 深入JDBC sqlserver连接写法的详解
  • 深入oracle特定信息排序的分析
  • 深入分析C中不安全的sprintf与strcpy
  • 哪儿有下载《深入理解Linux内核》这本书?(中文)


  • 站内导航:


    特别声明:169IT网站部分信息来自互联网,如果侵犯您的权利,请及时告知,本站将立即删除!

    ©2012-2021,,E-mail:www_#163.com(请将#改为@)

    浙ICP备11055608号-3